Abstract

In topic modeling, identifiability of the topics is an essential issue. Many topic modeling approaches have been developed under the premise that each topic has a characteristic anchor word that only appears in that topic. The anchor-word assumption is fragile in practice, because words and terms have multiple uses; yet it is commonly adopted because it enables identifiability guarantees. Remedies in the literature include using three- or higher-order word co-occurence statistics to come up with tensor factorization models, but such statistics need many more samples to obtain reliable estimates, and identifiability still hinges on additional assumptions, such as consecutive words being persistently drawn from the same topic. In this work, we propose a new topic identification criterion using second order statistics of the words. The criterion is theoretically guaranteed to identify the underlying topics even when the anchor-word assumption is grossly violated. An algorithm based on alternating optimization, and an efficient primal-dual algorithm are proposed to handle the resulting identification problem. The former exhibits high performance and is completely parameter-free; the latter affords up to 200 times speedup relative to the former, but requires step-size tuning and a slight sacrifice in accuracy. A variety of real text copora are employed to showcase the effectiveness of the approach, where the proposed anchor-free method demonstrates substantial improvements compared to a number of anchor-word based approaches under various evaluation metrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.