Abstract
The food canal of the proboscis of Lepidoptera serves for the uptake of nutrient fluids and the discharge of saliva. A valve was discovered at the entrance to the sucking pump in the head that separates these countercurrent flows in nymphalid butterflies. Three species of Nymphalidae were examined by dissections and light microscopic serial semithin sections. The sucking pump is a unit composed of three structures: (1) the oral valve, which is a projection of the epipharynx extending into the anterior cibarial lumen, (2) the expandable lumen, and (3) the posterior sphincter valve which controls influx into the oesophagus. Based on the microanatomical results, a functional model is presented to account for the uptake and swallowing of fluids and for the control of the salivary flow into the food canal of the proboscis. Dilator muscles of the sucking pump expand the lumen by pulling on the muscular dorso-anterior side. This opens the oral valve and fluid can be drawn into the lumen from the food canal of the proboscis. Circular compressor muscles which attach to both sides of the sclerotized ventro-posterior wall of the sucking pump reduce the size of the lumen; passively they close the oral valve and press fluid through the relaxed posterior sphincter opening into the oesophagus. According to this model saliva can be discharged into the food canal during the swallowing phase. The oral valve and pumping unit are similar in all studied species despite the fact that saliva presumably plays a special role in the derived pollen-feeding behaviour of one of them, viz. Heliconius melpomene.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have