Abstract
The direct integration of the harmonic oscillator path integral obscures the fundamental structure of its discrete, imaginary time propagator (density matrix). This work, by first proving an operator identity for contracting two free propagators into one in the presence of interaction, derives the discrete propagator by simple algebra without doing any integration. This discrete propagator is universal, having the same two hyperbolic coefficient functions for all short-time propagators. Individual short-time propagator only modifies the coefficient function's argument, its portal parameter, whose convergent order is the same as the thermodynamic energy. Moreover, the thermodynamic energy can be given in a closed form for any short-time propagator. Since the portal parameter can be systematically optimized by matching the expansion of the product of the two coefficients, any short-time propagator can be optimized sequentially, order by order, by matching the product coefficient's expansion alone, without computing the energy. Previous empirical findings on the convergence of fourth and sixth-order propagators can now be understood analytically. An eight-order convergent short-time propagator is also derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.