Abstract

Detection of dysrhythmic gastric slow wave (SW) activity could have significant clinical utility because dysrhyth-mias have been linked to gastric motility disorders. The elec-trogastrogram (EGG) and magnetogastrogram (MGG) enable the non-invasive assessment of SW activity, but most analysis methods can only resolve frequency and velocity. Improved characterization of dysrhythmic propagation patterns from non-invasive measurements is important for the diagnosis of motility disorders and could allow early treatment stratification. In this study, we demonstrate the use of a penalized linear regression framework to localize SW events on the longitudinal stomach axis using simulated MGG data. Priors relating to spatial sparsity, the organization of wavefronts into complete circumferential rings, and the local distribution of depolar-ization and repolarization phases were used to constrain the inverse solution. This method was applied to MGG computed for a single wavefront case and a multiple wavefront case that were constructed from simulated 3 cycle-per-minute normal SW activity. Propagation patterns along the longitudinal stomach axis were identifiable from reconstructed SW activity for both cases. Localization error was 5.7 ± 0.1 mm and 7.7 ± 0.1 mm for each respective case within the distal stomach when the signal-to-noise ratio was 10 dB. Results indicate that penalized linear regression can successfully localize SW events provided the 3D geometry of the stomach and torso were acquired. Clinical Relevance- This method could help to improve the efficiency and accuracy of diagnosing gastric motility disorders from non-invasive measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call