Abstract

An emerging branch of social cognitive neuroscience attempts to unravel the critical cognitive mechanisms that enable humans to engage in joint action. In the current experiment, differences in brain activity in participants engaging in solitary action and joint action were identified using whole brain fMRI while participants performed a virtual bar-balancing task either alone ( S), or with the help of a partner in each of two separate joint-action conditions (isomorphic [ J i] and non-isomorphic [ J n]). Compared to the performing the task alone, BOLD signal was found to be stronger in both joint-action conditions at specific sites in the human mirror system (MNS). This activation pattern may reflect the demand on participants to simulate the actions of others, integrate their own actions with those of their partners, and compute appropriate responses. Increasing inter-dependence (complementarity) of movements being generated by cooperating individuals ( J n > J i > S) was found to correlate with BOLD signal in the right anterior node of the MNS (pars opercularis), and the area around the right temporoparietal junction (TPJ). These data are relevant to current debates concerning the role of right IFG in complementary action, as well as evolving theories of joint action.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.