Abstract

The parietothalamic projections have been shown to be heterogeneous and appear to be a reflection of the detailed architectonic parcellation of the parietal lobe. In the present study WGA-HRP injections were placed in the different subdivisions of the posterior parietal cortex of the rhesus monkey to determine whether a similarly complex pattern also exists in the thalamocortical pathway. Additionally, in an attempt to determine whether there is an intranuclear specificity of projections from individual thalamic nuclei to different subdivisions of the parietal lobe, multiple retrograde fluorescent tracers were injected into the rostral to caudal sectors of the parietal lobe of the same animal. Different subdivisions of the parietal lobe appear to receive different sets of thalamic input. Thus the superior parietal lobule (SPL) projections are derived from more lateral regions in the thalamus, arising predominantly from the lateral posterior (LP) and pulvinar oralis (PO) nuclei, with additional contributions from the pulvinar lateralis (PL) and pulvinar medialis (PM) nuclei. The inferior parietal lobule (IPL), by contrast, receives its projections from more medial thalamic regions, its main thalamic input originating from PM, and aided by LP, PL, and PO. Both the SPL and IPL also receive projections from the mediodorsal (MD), ventroposterior, ventrolateral, intralaminar, and limbic nuclei, albeit from different components within these nuclei. A topographical arrangement also exists in the thalamic projections to the rostral versus the caudal subdivisions of both the SPL and the IPL. Thus, in the SPL, the ventral posterolateral nucleus, pars oralis (VPLo), ventral lateral nucleus, pars oralis (VLo), and ventral lateral nucleus, pars medialis (VLm) project to rostral regions, whereas the PM and limbic nuclei, anteroventral (AV), and anteromedial (AM), project to area PGm on the medial convexity of the SPL. With respect to projections to the IPL, the ventral posteromedial (VPM) and PO nuclei project to rostral regions, whereas the limbic nuclei lateral dorsal (LD), AM and AV project only to the caudal most area, Opt. A rostrocaudal difference is reflected also within certain nuclei (LP, PO, and PM) that project to the SPL or IPL. Thus rostral parietal subdivisions receive projections from ventral regions within these thalamic nuclei, whereas caudal parietal afferents arise from the dorsal parts of these nuclei. Intervening cortical levels receive projections from intermediate positions within the nuclei. It therefore seems that the increasing architectonic and functional complexity as one moves from rostral to caudal in the SPL and IPL appear to be reflected in the thalamic afferents.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.