Abstract

Friedreich's ataxia (FRDA) is one of the most common hereditary ataxias. It is caused by a GAA repeat in the first intron of the FXN gene, which encodes an essential mitochondrial protein. Patients suffer from progressive motor dysfunction due to the degeneration of mechanoreceptive and proprioceptive neurons in dorsal root ganglia (DRG) and cerebellar dentate nucleus neurons, especially at early disease stages. Postmortem analyses of FRDA patients also indicate pathological changes in motor cortex including in the projection neurons that give rise to the cortical spinal tract (CST). Yet, it remains poorly understood how early in the disease cortical spinal neurons (CSNs) show these alterations, or whether CSN/CST pathology resembles the abnormalities observed in other tissues affected by FXN loss. To address these questions, we examined CSN driven motor behaviors and pathology in the YG8JR FRDA mouse model. We find that FRDA mice show impaired motor skills, exhibit significant reductions in CSN functional output, and, among other pathological changes, show abnormal mitochondrial distributions in CSN neurons and CST axonal tracts. Moreover, some of these alterations were observed as early as two months of age, suggesting that CSN/CST pathology may be an earlier event in FRDA disease than previously appreciated. These studies warrant a detailed mechanistic understanding of how FXN loss impacts CSN health and functionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.