Abstract

Wastewater treatment facility location selection and network design issues have become attractive topics in the field of wastewater management due to increasing human population, resource scarcity, environmental concerns, and rise of necessity for sustainable solutions for future policy designs. Especially in areas where the demand for wastewater treatment increases dramatically over the years because of reasons such as high migration levels, rapid industrialization, and tourism activities, the problem turns out to be more critical and dynamic. The existing studies try to deal with the issue through mathematical modeling approaches based on optimization perspectives, which require significant computational effort. In this study, an alternative approach based on system dynamics (SD) method is proposed to examine the complex dynamic and nonlinear structure of wastewater treatment facility location selection and network design problems. The proposed SD simulation model is designed for a densely populated industrial and tourism spot, the city of Antalya, located on the Mediterranean coast of Turkey. The model is capable of determining where and when to build a new wastewater treatment facility as well as generating the generic wastewater network structure to be built for the five districts situated in the city center based on cost issues for 2015–2040 period. In addition, the impacts of demand level changes for wastewater treatment due to population variations are analyzed via several scenarios to help decision makers to develop sustainable and cost-efficient management policies. Although SD is a frequently utilized approach in the water/wastewater management arena, to the best of our knowledge, this study is the first attempt to examine the complex and dynamic nature of wastewater treatment facility location selection and network design problems through SD approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.