Abstract
A better understanding of ecosystem processes requires accurate estimates of forest biomass and structure on global scales. Recently, there have been demonstrations of the ability of remote sensing instruments, such as radar and lidar, for the estimation of forest parameters from spaceborne platforms in a consistent manner. These advances can be exploited for global forest biomass accounting and structure characterization, leading to a better understanding of the global carbon cycle. The popular techniques for the estimation of forest parameters from radar instruments, in particular, use backscatter intensity, interferometry, and polarimetric interferometry. This paper analyzes the uncertainty in biomass estimates derived from single-season L-band cross-polarized (HV) radar backscatter over temperate forests of the Northeastern United States. An empirical approach is adopted, relying on ground-truth data collected during field campaigns over the Harvard and Howland Forests in 2009. The accuracy of field biomass estimates, including the impact of the diameter-biomass allometry, is characterized for the field sites. A single-season radar data set from the National Aeronautics and Space Administration Jet Propulsion Laboratory's L-band Uninhabited Aerial Vehicle Synthetic Aperture Radar instrument is analyzed to assess the accuracy of the backscatter-biomass relationships with a theoretical radar error model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have