Abstract
This paper addresses the problem of stability analysis of finite-difference time-domain (FDTD) approximations for Maxwell's equations. The combination of the von Neumann method with the Routh-Hurwitz criterion is proposed as an algebraic procedure for obtaining analytical closed-form stability expressions. This technique is applied to the problem of determining the stability conditions of an extension of the FDTD method to incorporate dispersive media previously reported in the literature. Both Debye and Lorentz dispersive media are considered. It is shown that, for the former case, the stability limit of the conventional FDTD method is preserved. However, for the latter case, a more restrictive stability limit is obtained. To overcome this drawback, a new scheme is presented, which allows the stability limit of the conventional FDTD method to be maintained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.