Abstract

AbstractThe credible solution of discretized Maxwell's equations in spaces occupied by Lorentz dispersive media is the main subject of this work. Specifically, we introduce a finite‐difference time‐domain (FDTD) algorithm with a typical (2,4) structure that features dispersion‐relation‐preserving characteristics and produces reduced numerical errors in two‐dimensional electromagnetic simulations, compared to the standard approach with similar computational requirements. We consider the case of dispersive media with non‐vanishing absorption coefficients and investigate different options for the suitable modification of the spatial approximations, so that the accomplished accuracy is optimized for a given computational overhead. The properties of the proposed FDTD technique are thoroughly examined, both theoretically and in numerical tests, and the performance upgrade compared with the conventional solution is assessed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.