Abstract
Forests provide numerous ecosystem goods and services. Their roles are considered as important for both climate mitigation and adaptation program. In Nepal, there are significant forest resources which are distributed in different regions; however, the studies on the spatial tree species distribution and the above-ground biomass and their relationship at the landscape level have not been well studied. This study aims to analyze the relationship, distribution of tree species diversity, and above-ground biomass at a landscape level. The data used for this study were obtained from the Forest Research and Training Center of Nepal, International Centre for Integrated Mountain Development (ICIMOD), and Worldwide Wildlife Fund (WWF-Nepal). The landscape has a mean of 191.89 tons ha−1 of the above-ground biomass. The highest amount of the above-ground biomass measured was 650 tons ha−1 with 96 individual trees, and the least was 3.428 tons ha−1. The measured mean height of the tree was 11.77 m, and diameter at breast height (DBH) was 18.59 cm. In the case of the spatial distribution of the above-ground biomass, plots distributed at the middle altitude range greater than 900 meters above sea level (m. a. s. l) to 3000 meters above sea level taking more amount of the above-ground biomass (AGB). Similarly, the highest plot-level Shannon diversity index (H’) was 2.75 with an average of 0.96 at the middle altitude region followed by the lower region with an average of 0.89 and least 0.87 at a higher elevation. Above-ground biomass (R2 = 0.48) and tree height (R2 = 0.506) significantly increased with increasing elevation up to a certain level increased of elevation. Diameter at breast height (DBH) showed significance (R2 = 0.364) but small increase with increasing elevation, while the relationship among tree species diversity index, above-ground biomass, and elevation showed a weak and very weak positive relationship with R2 = 0.018 and R2 = 0.002, respectively. Based on the overall results, it is concluded that elevation has some level of influence on the forest tree diversity and above-ground biomass. The finding of this study could be useful for landscape-level resource management and planning under various changes.
Highlights
Forests have a significant function in the world climate system by changing the concentration of carbon dioxide in the atmosphere [1]
160 different tree species were recorded from the plot-level survey data from different altitudinal ranges in the Chitwan-Annapurna Landscape (CHAL) area. e highest number of different individual tree species recorded is 29 in a plot, and the least is 1 species which is only one species that exists in that plot
In the case of altitudinal variation and tree species diversity, an average Shannon diversity index for different altitudinal zones was calculated based on the plot elevation location. e calculation shows the middle region expanding from 1000 to 2500 m has the largest average index value of 0.96 followed by a lower region below 1000 m, which has 0.89, and least in the upper region 2500–3500 m with 0.87 Shannon diversity index value
Summary
Forests have a significant function in the world climate system by changing the concentration of carbon dioxide in the atmosphere [1]. E interrelation between climate change, biodiversity, and decreasing forest area has been observed in a different spatial scale ranging from local, regional, and at a global level. Out of various sampling techniques, stratified random sampling has been extensively used for forest biomass inventory as it gives more accurate estimation [31] During the fieldwork, they have collected different information such as tree height, diameter at breast height (DBH) measured at 1.3 meters above 10 cm, tree species (local name and scientific name), and plot spatial information. A total of 384 plot data collected from 2010 to 2015 in different physiographic regions were processed and analyzed for measuring the spatial distribution of tree diversity and above-ground biomass; further data from 90 plots representing different elevations were used for statistical analysis along the ChitwanAnnapurna Landscape
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have