Abstract

<p>The paper investigates the outage probability (OP) of a cognitive radio-based satellite-ground transmission system. In this configuration, both direct and relay links are activated to facilitate transmission from the primary satellite source to terrestrial users. The primary metric under scrutiny is the outage probability for both the primary and secondary networks. Utilizing the Shadowed-Rician fading model, commonly applied to satellite channels, for the satellite segment, and Nakagami-m fading models for terrestrial channels, we assess the OP by analyzing the expressions for both primary and secondary users. Additionally, we explore the impact of key system parameters on the OP’s performance. Indeed, the signal-to-noise ratio (SNR) and target rate are the main factors affecting the outage behavior of users on the ground. We identify certain conditions necessary to achieve improved performance by controlling key system parameters. Furthermore, this paper provides guidelines for designing cognitive radio (CR) systems in satellite configurations to meet the quality requirements of received signals on the ground. The analysis results are validated through Monte Carlo simulations implemented using MATLAB.<strong></strong></p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.