Abstract

Staphylococcus aureus expresses many Microbial Surface Recognizing Adhesive Matrix Molecules (MSCRAMM's) to recognize host extracellular matrix (ECM) molecules to initiate colonization. The MSCRAMM, fibronectin binding protein A (FnBPA), is an important adhesin for S. aureus infection. FnBPA also binds with fibrinogen (Fg) by using a unique ligand binding mechanism called dock, lock and latch. Nanoparticles, especially nanosilver particles have been widely used in a variety of biomedical applications which includes disease diagnosis and treatment, drug delivery and implanted medical device coating. In a biological system, when protein molecules encounter nanoparticle, they can be absorbed onto its surface which results in the formation of protein corona. In the present study, we have analysed the fibrinogen binding ability of rFnBPA(189-512) in the presence of silver nanoparticles by employing techniques like gel shift assay, Western blot, size exclusion chromatography, enzyme-linked immunosorbent assay, bio-layer interferometry and circular dichroism spectroscopy. The results indicate that rFnBPA(189-512) is unable to bind to Fg in the presence of a nanoparticle. This could be due to the inaccessibility of the Fg binding site and conformational change in rFnBPA(189-512). With nanoparticles, rFnBPA(189-512) undergoes significant structural changes as the β-sheet content has drastically reduced to 10% from the initial 60% at higher concentration of the nanoparticle. Pathogenic bacteria interact with its surrounding environment through their surface molecules which includes MSCRAMMs. Therefore MSCRAMMs play an important role when bacteria encounter nanoparticles. The results of the present study suggest that the orientation of the protein during the absorption on the surface of a nanoparticle as well as the concentration of the nanoparticle, will dictate the function of the absorbed protein and in this case the Fg binding property of rFnBPA(189-512).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.