Abstract

Human mobility patterns reflect many aspects of life, from the global spread of infectious diseases to urban planning and daily commute patterns. In recent years, the prevalence of positioning methods and technologies, such as the global positioning system, cellular radio tower geo-positioning, and WiFi positioning systems, has driven efforts to collect human mobility data and to mine patterns of interest within these data in order to promote the development of location-based services and applications. The efforts to mine significant patterns within large-scale, high-dimensional mobility data have solicited use of advanced analysis techniques, usually based on machine learning methods, and therefore, in this paper, we survey and assess different approaches and models that analyze and learn human mobility patterns using mainly machine learning methods. We categorize these approaches and models in a taxonomy based on their positioning characteristics, the scale of analysis, the properties of the modeling approach, and the class of applications they can serve. We find that these applications can be categorized into three classes: user modeling, place modeling, and trajectory modeling, each class with its characteristics. Finally, we analyze the short-term trends and future challenges of human mobility analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.