Abstract
Human mobility data are an important proxy to understand human mobility dynamics, develop analytical services, and design mathematical models for simulation and what-if analysis. Unfortunately mobility data are very sensitive since they may enable the re-identification of individuals in a database. Existing frameworks for privacy risk assessment provide data providers with tools to control and mitigate privacy risks, but they suffer two main shortcomings: (i) they have a high computational complexity; (ii) the privacy risk must be recomputed every time new data records become available and for every selection of individuals, geographic areas, or time windows. In this article, we propose a fast and flexible approach to estimate privacy risk in human mobility data. The idea is to train classifiers to capture the relation between individual mobility patterns and the level of privacy risk of individuals. We show the effectiveness of our approach by an extensive experiment on real-world GPS data in two urban areas and investigate the relations between human mobility patterns and the privacy risk of individuals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Intelligent Systems and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.