Abstract

Abstract The exhaust of internal combustion engines (ICEs) is characterized by rapid large amplitude exhaust gas temperature (EGT) pulsations that demand high-bandwidth measurements for accurate instantaneous and mean EGTs. While measurement technique challenges constrain on-engine EGT pulse measurements, reduced-order system simulations numerically estimate the EGT pulse and its mean to overcome the measurement limitation. Notwithstanding high-bandwidth pressure measurements, model calibration and validation for the EGT are confined to mean indications using sheathed thermal sensors like thermocouples and resistance thermometers. These EGT measurements are susceptible to errors caused by heat transfer, flow unsteadiness, and the thermal inertia of the sensor. Exposed thin-wire thermocouples provide an intermediate solution to the robustness-to-response tradeoff of thermal sensors. While the thermocouples' thermal inertia significantly affects the measured EGT pulse, the signal derivative (unscaled dynamic error) provides greater insight by indicating the EGT waveform. This study utilizes a 50.8-μm Type-K thermocouple to contrast the exhaust pressure and EGT pulses through the measured signal and its derivative. Experiments in a single-pipe exhaust of a heavy-duty diesel engine with isolated engine speed and load sweeps (LS) present significant differences between the pressure and indicative EGT waveforms. It also highlights a rapid prepulse fluctuation unique to the EGT pulse waveform caused by exhaust gas-dynamics and impacted by heat transfer. The study motivates the need for increased bandwidth EGT measurements to improve model validation of EGT pulse estimates while showcasing the utility of thin-wire thermocouples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call