Abstract

Bacterial biofilms are notorious for their deleterious effects on human health and industrial biofouling. Key processes in biofilm formation are regulated by the second messenger signal cyclic dimeric guanosine monophosphate (c-di-GMP); accumulation of c-di-GMP promotes biofilm formation, while lowering c-di-GMP promotes motility. Complex networks of modular enzymes are involved in regulating c-di-GMP homeostasis. Understanding how these enzymes function in bacterial cells can help enlighten how bacteria use environmental cues to modulate c-di-GMP and cell physiology. In this article, we describe a workflow that utilizes Escherichia coli as a heterologous host to allow the researcher to identify genes encoding potential c-di-GMP-metabolizing proteins, to express the gene of interest from an inducible plasmid, and to directly detect changes in intracellular c-di-GMP using ultra-performance liquid chromatography-tandem mass spectrometry. © 2018 by John Wiley & Sons, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.