Abstract
Condensers serve as important components for humidification–dehumidification (HDH) desalination plants. Based on the interpenetration continua approach with volume averaging technique, a mathematical dynamic model for analyzing the heat and mass transfer within direct contact condensers with co-current or countercurrent flow arrangement was developed. It was validated against the experimental data from a small scale HDH desalination system. Comparisons including the productivities and the temperature profiles of gas, liquid, and solid phases show good agreement with the measurements. Phase change material (PCM) melting processes have little effect on water production rate for co-current flow arrangement, but the condenser packed with PCM capsules have higher water production rates than that packed with air capsules packed under given conditions. The relative humidity profile of the bulk gas shows contrary trend with the gas temperature profile. The direct contact condenser with countercurrent flow arrangement can provide much better heat and mass transfer between gas and water and produce about 16.3% more fresh water than the same condenser with co-current flow arrangement in 4 h under given conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.