Abstract
The extensive interest in sustainable water management reflects the extent to which the global water landscape has changed in the past twenty years, which is a natural development of changes in water resources and an increase in the level of imbalance between water supply and demand. In this paper, a simulation model based on system dynamics (SD) methodology was developed to aid sustainable water management efforts in a semi-arid region. Six policy scenarios were used to study, analyze, and assess water management trends in the Southeast region of New Mexico, USA. The modeling process included two phases: calibration (2000–2015) and future prediction (2016–2050). Several statistical criteria were applied to assess the developed model performance. The findings revealed that the simulated outputs were in excellent agreement with the historical data, indicating accurate model simulation. The SD model’s determination coefficients ranged from 0.9288 to 0.9936 and the index of agreement values ranged from 0.9397 to 0.9958. Findings for the business-as-usual scenario indicated that total water withdrawals and total population will continue to rise, whereas groundwater storage, agricultural consumptive water use, and total consumptive water use will decrease over the simulated period. Sensitivity analysis using Monte Carlo simulation indicated that cultivated irrigated land change is the most influential parameter affecting groundwater storage, water supply storage change (total withdrawals), agricultural consumptive water use, and total consumptive water use. The changes occurring in the agricultural cultivated area had a great influence on controlling the groundwater system. Overall, the results showed that our SD model has been successful in capturing the system’s dynamic behavior, and confirmed its capability in modeling water management issues for policy and decision makers under semi-arid conditions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have