Abstract

In a recent paper, we derived an analytical expression for the void fraction profile in low Reynolds number bubbly pipe flows, based on a balance of hydrodynamic forces on bubbles. The objective of the present work is to perform a comparison of this analytical Bubble Force Balance Formula (BFBF) with an experiment from the literature. We begin by simulating this experiment with the NEPTUNE_CFD code. In particular we show that using an R ij -e model to account for the liquid velocity fluctuations yields reasonable results. In order to compare our analytical profile with experimental measurements, we restrict ourselves to the near-wall region. In this region, the void fraction profile results from a balance between dispersion and wall forces, and the dispersion coefficient can be considered as uniform. The analytical BFBF profile is seen to be in good agreement with the measurements. We are also capable to estimate the dispersion coefficient in this near-wall region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.