Abstract
BackgroundCanAssist-Breast is an immunohistochemistry based test that predicts risk of distant recurrence in early-stage hormone receptor positive breast cancer patients within first five years of diagnosis. Immunohistochemistry gradings for 5 biomarkers (CD44, ABCC4, ABCC11, N-Cadherin and pan-Cadherins) and 3 clinical parameters (tumor size, tumor grade and node status) of 298 patient cohort were used to develop a machine learning based statistical algorithm. The algorithm generates a risk score based on which patients are stratified into two groups, low- or high-risk for recurrence. The aim of the current study is to demonstrate the analytical performance with respect to repeatability and reproducibility of CanAssist-Breast.MethodsAll potential sources of variation in CanAssist-Breast testing involving operator, run and observer that could affect the immunohistochemistry performance were tested using appropriate statistical analysis methods for each of the CanAssist-Breast biomarkers using a total 309 samples. The cumulative effect of these variations in the immunohistochemistry gradings on the generation of CanAssist-Breast risk score and risk category were also evaluated. Intra-class Correlation Coefficient, Bland Altman plots and pair-wise agreement were performed to establish concordance on IHC gradings, risk score and risk categorization respectively.ResultsCanAssist-Breast test exhibited high levels of concordance on immunohistochemistry gradings for all biomarkers with Intra-class Correlation Coefficient of ≥0.75 across all reproducibility and repeatability experiments. Bland-Altman plots demonstrated that agreement on risk scores between the comparators was within acceptable limits. We also observed > 90% agreement on risk categorization (low- or high-risk) across all variables tested.ConclusionsThe extensive analytical validation data for the CanAssist-Breast test, evaluating immunohistochemistry performance, risk score generation and risk categorization showed excellent agreement across variables, demonstrating that the test is robust.
Highlights
CanAssist-Breast is an immunohistochemistry based test that predicts risk of distant recurrence in early-stage hormone receptor positive breast cancer patients within first five years of diagnosis
We have developed and validated CanAssist-Breast (CAB) test that uses a cost-effective, gold standard methodology of immunohistochemistry (IHC) along with key clinicopathological factors to determine risk of distant recurrence in early stage Hormone Receptor (HR)+ breast cancer [9]
CD44 is a stem cell marker, cadherins contribute to epithelial-mesenchymal transition (EMT), while ABCC4 and ABCC11 are ATP binding cassette transporter proteins involved in drug efflux leading to drug resistance
Summary
CanAssist-Breast is an immunohistochemistry based test that predicts risk of distant recurrence in early-stage hormone receptor positive breast cancer patients within first five years of diagnosis. Most tests that are currently available to predict risk of distant recurrence for breast cancer utilize quantitative gene expression-based platforms [5,6,7,8]. We have developed and validated CanAssist-Breast (CAB) test that uses a cost-effective, gold standard methodology of immunohistochemistry (IHC) along with key clinicopathological factors to determine risk of distant recurrence in early stage HR+ breast cancer [9]. CAB uses IHC based evaluation of expression levels of 5 key biomarkers (CD44, N-cadherin, pan-cadherin, ABCC4 and ABCC11) and three clinicopathological prognostic parameters tumor size, tumor grade and node status (as obtained from the medical records from hospitals where these patients were treated) to arrive at a “CAB-Risk Score”. “CAB Risk Score” classifies patients into two categories, either low- or high-risk for distant recurrence
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have