Abstract
Targeted next-generation sequencing (NGS) panels are increasingly being utilized to identify actionable gene amplifications (copy number > 4) among solid tumors. This study validated the analytical performance of two amplicon-based NGS assays, the Oncomine Comprehensive Panel (OCAv3) and the Oncomine Focus Assay (OFA), for detecting gene amplification in formalin-fixed paraffin-embedded (FFPE) tumors of varying cellularity. OCAv3 was assessed for amplification detection in 756 FFPE samples comprising various tumor types. We demonstrated that with standardized quality control metrics, including median absolute pairwise difference score, these assays can achieve a near-perfect positive predictive value, although their sensitivity for detecting amplifications significantly decreased in tumors with cellularity below 30%. Stratifying tumor cellularity into 10-30%, 31-60%, and 61-95% groups revealed significantly higher gene amplification detection rates in the 31-60% and 61-95% groups versus the 10-30% group (20.6% and 26.7% vs. 9.2%, p < 0.0001). When considering all detected gene amplifications, the average amplification calling per sample was nearly five-fold lower in the 10-30% group versus the 61-95% group (0.11 vs. 0.52; p < 0.0001). To further investigate the analytic performance of OCAv3 in detecting ERBB2 amplification, we analyzed a cohort of 121 uterine carcinomas with confirmed ERBB2 status by HER2 IHC or FISH, in which a threshold incorporating amplifications and tumor cellularity achieved 79% sensitivity and 100% specificity, potentially eliminating the need for FISH analysis in 34% of equivocal cases. In a separate validation cohort, similar analytical performance was observed, with the threshold demonstrating consistent sensitivity and specificity. This study highlights the strengths and limitations of amplicon-based NGS assays in detecting amplifications using real-world data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have