Abstract

An analytical approach is presented for the study of synchronization effects in spin-transfer-driven nanomagnets subjected to radio-frequency magnetic fields. The conditions are derived and discussed under which the current-induced magnetization precession is synchronized by the radio-frequency field. Exact analytical results are obtained for the case when the problem exhibits uniaxial symmetry around the axis perpendicular to the device plane. It is demonstrated that the magnetization dynamics under nonzero current and nonzero rf field is identical in structure to that under zero current. On this basis, analytical predictions are obtained for: the existence of phase-locking between current-induced magnetization precession and rf field oscillations; the frequency pulling effect in proximity of phase locking; the occurrence of hysteresis effects in phase-locking as a function of the spin-polarized current. The proposed approach is valid for arbitrary rf field amplitude and current intensity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call