Abstract
Radio-frequency (RF) field mapping and its analysis inside a large passenger aircraft is a complex EM analysis problem, owing to its inherent concavity. The further hybrid surface modeling required for such concave enclosures leads to ray proliferation, thereby making the problem computationally intractable. In this paper, a large passenger-aircraft cabin is modeled as a single curved elliptical cylindrical cavity having a floorboard and windows. Unlike the available ray-tracing packages that use extensive numerical search methods, a quasi-analytical ray-propagation model is proposed here. This involves uniform ray launching, an intelligent scheme for ray bunching, and an adaptive reception algorithm to obtain the ray-path details inside the concave cabin. Although the image method yields precise point-to-point solutions, it cannot be used for curved concave environments. The developed method is therefore validated with respect to the RF field inside a cuboid. The RF field at the receiver within the cabin is determined using the ray-path descriptions and the constitutive EM parameters of the aircraft's cabin materials. The convergence analysis of the RF field buildup is carried out with respect to the propagation time and the number of bounces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.