Abstract

Microfluidics in microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) devices is complex due to the large surface area to volume ratio. Thus, surface properties play an important role in flow behavior. In this paper, we summarize the effects of electric double layer and surface hydrophobicity of rectangular microchannels on time-dependent electrokinetic flow. Theoretically, we have shown that flow resistance can, in principal, be significantly reduced so that a larger flow rate can be obtained for pressure-driven flow or electric-field-driven flow. This relies on the ability to change surface charges and surface hydrophobicity independently. Our theoretical results provide guidelines for the design and operation of microfluidic flow in rectangular microchannels. Because of liquid slippage, zeta potential determination by traditional method could be overestimated. Taking into account the effect of hydrophobicity, a modified method is proposed to determine the zeta potential and slip coefficient for parallel-plate microchannels with hydrophobic surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.