Abstract

Wettability is an important parameter in micro-scale flow patterns. Previous research has usually been conducted in conventional microtubes due to limitations of visualizing flow patterns and fabricating microchannels. However, most microchannels in practical applications have rectangular shape. Furthermore, pressure drop is closely related with flow pattern. Hence, we studied water liquid and nitrogen gas flows in rectangular microchannels with different wettabilities. The rectangular glass microchannels were fabricated from photosensitive glass, whose surface is hydrophilic. The surface of one was silanized using octadecyl-trichloro-silane (OTS) to prepare a hydrophobic microchannel. The two-phase flow pattern was visualized with a high-speed camera and a long distance microscope. The frictional pressure drop in the microchannel was measured directly with embedded pressure ports. The flow pattern and pressure drop in the hydrophobic microchannel were totally different from those in the hydrophilic microchannel. Finally, the two-phase frictional pressure drop was analyzed based on the flow patterns of different wettabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.