Abstract
The classical Barenblatt solution of an initial-boundary value problem (IBVP) to the parabolic Boussinesq equation, which gives a rectangular triangle of full saturation, propagating from a reservoir into an adjacent porous bank with a vertical slope, is shown to coincide with a solution of IBVP to the elliptic Laplace equation with a phreatic surface along which both isobaricity and kinematic conditions are exactly met. For an arbitrary bank slope, a saturated wedge, which propagates (translates) into dry soil, is also explicitly found. The analytical solutions favorably compare with the results of HYDRUS-2D modeling, i.e., with the FEM solutions of the same IBVPs to the Richards equation. Applications to geotechnical engineering of dykes subject to the impact of flash floods are discussed by comparisons of phreatic lines, loci of the fronts, isobars, equipotential contours, vector fields of Darcian velocity, isotachs, and streamlines in the three models. For example, it is shown that a rapid drawup of the reservoir level induces hydraulic gradients, which may cause seepage-induced erosion of the porous medium, in particular, lessivage.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have