Abstract

DSM and nanometer VLSI designs are subject to an increasingly significant thermal effect on VLSI circuit lifetime and performance variation, which can be effectively subdued by VLSI placement. We propose analytical placement for accurate and efficient VLSI thermal optimization, and propose minimized maximum on-chip temperature as the thermal optimization objective for improved VLSI lifetime and minimized performance variation. We develop an effective analytical thermal placement technique, as well as an improved analytical placement technique with a new cell spreading function. Our experimental results show that our proposed analytical thermal placement achieves 17.85% and 30.77% maximum on-chip temperature variation reduction as well as 4.61% and 0.45% wirelength reduction respectively for the two industry design test cases compared with thermal-oblivious analytical placement, e.g., APlace.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.