Abstract

In this paper, we analytically study the holographic superconductor models with the high derivative (HD) coupling terms. Using the Sturm-Liouville (S-L) eigenvalue method, we perturbatively calculate the critical temperature. The analytical results are in good agreement with the numerical results. It confirms that the perturbative method in terms of the HD coupling parameters is available. Along the same line, we analytically calculate the value of the condensation near the critical temperature. We find that the phase transition is second order with mean field behavior, which is independent of the HD coupling parameters. Then, in the low-temperature limit, we also calculate the conductivity, which is qualitatively consistent with the numerical one. We find that the superconducting energy gap is proportional to the value of the condensation. But we note that since the condensation changes with the HD coupling parameters, as the function of the HD coupling parameters, the superconducting energy gap follows the same change trend as that of the condensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.