Abstract

In this paper, several analytical models have been developed for 2-D potential distribution, subthreshold current, drain induced barrier lowering (DIBL), and subthreshold-slope (SS) to study the subthreshold behaviour of bilayer graphene filed effect transistors (BLG-FETs). The models are grounded on the basis of the exact solution of the two-dimensional Poisson’s equation while the quantum capacitance effect has been considered throughout the models. The accuracy of the potential distribution model is verified by its analytical results that agree well with those of the FlexPDE Poissonʼs equation solver program. In addition, the effects of the channel length, the oxide thickness, quantum capacitance, and gate biases on subthreshold parameters of BLG-FETs have been explored and the results are compared with those of the silicon FETs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.