Abstract

In Gauss–Bonnet gravity, we analytically investigate the p-wave superfluid models in five dimensional AdS soliton and AdS black hole in order to explore the influences of the higher curvature correction on the holographic superfluid phase transition. We observe that the analytical findings are in good agreement with the numerical computations. Our results show that the critical chemical potential of the system increases with the increase of the Gauss–Bonnet parameter in AdS soliton background, while the critical temperature decreases as the Gauss–Bonnet factor grows if the phase transition of the system is of the second order in AdS black hole background, both of which indicate that the higher curvature correction hinders the formation of the condensation of the vector operator. Moreover, the critical exponent of the system takes the mean-field value 1/2, which is independent of the Gauss–Bonnet parameter and the spatial component of the gauge field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.