Abstract
Characteristics of electromagnetic ion cyclotron waves in Saturn inner magnetosphere has been investigated here in close proximity of equatorial plane at approximately mid of the E ring near 5Rs by using data sets released by Voyager and Cassini spacecraft. Previous encounter of these spacecraft with Saturn exposed the strong signature of EMIC wave and harmonics believed to be originated within 7.5 Rs due to dominant O+ ions and water group ions. Maxwellian ring distribution for pickup ions contributing ring around planet is opted to find unperturbed particle density. Therefore, investigating here growth of obliquely propagating EMIC wave undergoing wave particle mechanism by opting kinetic approach to establish mathematical dispersion model in view of different parameters and extended to comparative study for parallel propagation. Parametric analysis inferred that waves propagating in the oblique direction grows more as compare to parallel propagating waves for the extended value of temperature anisotropy and the angle of propagation with respect to the ambient magnetic field B (at equator) and second harmonic of ion cyclotron waves indicating that the modified ion cyclotron wave shifts the wave spectra to higher side with increase in bandwidth. Study can be carried out to analyze other instabilities to explore magnetospheric dynamics at different radial distances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.