Abstract
Purpose. Analyze stochastic methods for metamodeling of cloud infrastructures (СI) based on conceptual requirements for ensuring their readiness taking into account performance requirements, scalability of the computing resource, energy saving and elasticity of control of the components of the СI. The technique. The analysis of stochastic methods used to model the behavior and assess readiness indicators, the reliability of cloud infrastructures (СI) is performed. As a fundamental basis, the taxonomy of OO metamodeling is considered, which is based on the conceptual foundations of ensuring productivity, resource scalability, energy saving, and elasticity of management of the components of the cloud infrastructure. In addition to the well-known estimation methods using the apparatus of stochastic Petri nets, Markov chains are proposed to focus on the possibility of using semi-Markov modeling methods that contribute to improving the accuracy of evaluating the metrics of the quality of services provided (QoS). Results. The proposed taxonomy is a fundamental basis for modeling behavior and assessing the availability and reliability of cloud infrastructures. Scientific novelty. The problem of the lack of methodology for modeling the processes of СI functioning is solved, which is based on a single taxonomic basis of a comprehensive solution to the problem of assessing, analyzing and monitoring the level of readiness of cloud infrastructures. Practical value. The analysis opens up the possibility of using stochastic methods to ensure performance, resource scalability, energy saving and elasticity of management of the components of the cloud infrastructure. The considered methods of modeling can be applied to the selection of optimal architectural solutions in accordance with the established criterion of readiness of cloud infrastructures.
Highlights
Analyze stochastic methods for metamodeling of cloud infrastructures (СI) based on conceptual requirements for ensuring their readiness taking into account performance requirements, scalability of the computing resource, energy saving and elasticity of control of the components of the СI
The taxonomy of OO metamodeling is considered, which is based on the conceptual foundations of ensuring productivity, resource scalability, energy saving, and elasticity of management of the components of the cloud infrastructure
In addition to the well-known estimation methods using the apparatus of stochastic Petri nets, Markov chains are proposed to focus on the possibility of using semi-Markov modeling methods that contribute to improving the accuracy of evaluating the metrics of the quality of services provided (QoS)
Summary
Відповідно до таксономiчноï схеми (рис. 2) метамоделювання готовності хмарної інфраструктури. 3. Архітектура стохастичних методів метамоделювання готовності ХІ / Architecture of stochastic metamodeling methods of readiness of CI. Кожна з цих груп може бути використана для моделювання певних властивостей ХІ. Узагальнені дані за оцінкою можливостей використання зазначених методів для моделювання ХІ, представлені в табл. 1. Зокрема, ССП можуть бути використані для моделювання та оцінки можливостей забезпечення гнучкості управління ХІ. У разі спостереження маркiвского процесу вiдмов-відновлення для оцінки показників готовності (надійності) ХІ доцільно використовувати узагальнені стохастичні мережі Петрі (УСМП) [4]. Цей самий апарат можна використовувати для оцінки показників гнучкості управління інфраструктурою. Не менш ефективно можна використовувати класичні методи побудови «дерева відмов» і структурних схем надійності (ССН) для вирішення завдань забезпечення готовності (надійності) хмарних інфраструктур
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Construction, materials science, mechanical engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.