Abstract
In this article, the quadrupole method is implemented in order to simulate the effects of heterogeneities on one dimensional advective and diffusive transport of a passive solute in porous media. Theoretical studies of dispersion in heterogeneous stratified media can bring insight into transport artefacts linked to scale effects and apparent dispersion coefficients. The quadrupole method is an efficient method for the calculation of transient response of linear systems. It is based here on the Laplace transform technique. The analytical solutions that can be derived by this method assists understanding of upscaled parameters relevant to heterogeneous porous media. First, the method is developed for an infinite homogeneous porous medium. Then, it is adapted to a stratified medium where the fluid flow is perpendicular to the interfaces. The first heterogeneous medium studied is composed of two semi-infinite layers perpendicular to the flow direction each having different transport properties. The concentration response of the medium to a Dirac injection is evaluated. The case studied emphasises the importance in the choice of the boundary conditions. In the case of a periodic heterogeneous porous medium, the concentration response of the medium is evaluated for different numbers of unit-cells. When the number of unit cells is great enough, depending on the transport properties of each layer in the unit cell, an equivalent homogeneous behaviour is reached. An exact determination of the transport properties (equivalent dispersion coefficient) of the equivalent homogeneous porous medium is given.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have