Abstract

New exact analytical solutions are presented for both stress and velocity fields for a Coulomb–Mohr granular solid assuming non-dilatant double-shearing theory. The solutions determined apply to highly frictional materials for which the angle of internal friction φ is assumed equal to 90°. This major assumption is made primarily to facilitate exact analytical solutions, and it is discussed at length in the Introduction, both in the context of real materials which exhibit large angles of internal friction, and in the context of using the solutions derived here as the leading term in a regular perturbation solution involving powers of 1−sin φ. The analytical velocity fields so obtained are illustrated graphically by showing the direction of the principal stress as compared to the streamlines. The stress solutions are also exploited to determine the static stress distribution for a granular material contained within vertical boundaries and a horizontal base, which is assumed to have an infinitesimal central outlet through which material flows until a rat-hole of parabolic or cubic profile is obtained, and no further flow takes place. A rat-hole is a stable structure that may form in storage hoppers and stock-piles, preventing any further flow of material. Here we consider the important problems of two-dimensional parabolic rat-holes of profile y= ax 2, and three-dimensional cubic rat-holes of profile z= ar 3, which are both physically realistic in practice. Analytical solutions are presented for both two and three-dimensional rat-holes for the case of a highly frictional granular solid, which is stored at rest between vertical walls and a horizontal rigid plane, and which has an infinitesimal central outlet. These solutions are bona fide exact solutions of the governing equations for a Coulomb–Mohr granular solid, and satisfy exactly the free surface condition along the rat-hole surface, but approximate frictional conditions along the containing boundaries. The analytical solutions presented here constitute the only known solutions for any realistic rat-hole geometry, other than the classical solution which applies to a perfectly vertical cylindrical cavity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call