Abstract
This study investigates soliton solutions to the (2 + 1)-dimensional space fractional Heisenberg ferromagnetic spin chain equation incorporating beta fractional derivatives that explain the nonlinear propagation of spin wave in the ferromagnetic material with magnetic interactions including the both classical and semi-classical frameworks. This model has applications in spintronics, plasma physics, magnet theory, and condensed matter physics. Employing the two-potential extended Kudryashov and (G′/G, 1/G)-expansion methods, we derive some original and generic solutions composed of trigonometric functions, hyperbolic functions, and their rational forms. For particular values of the parameters, these solutions offer V-shaped, bell-shaped, kink, periodic, flat kink, and singular periodic solitons. The physical behavior of these solitons is demonstrated through three-dimensional, contour, and two-dimensional plots. The results are important in the study of phase transitions in ferromagnetic materials, lattice vibrations in condensed matter, and the propagation of shock waves in plasma. This study also demonstrates the potential and reliability of the employed strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Partial Differential Equations in Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.