Abstract

The existing tunnel construction causes stratum deformation, which in turn leads to additional deformation and internal force of the overlying pipeline, thus increasing the risk of pipeline accidents. Then, how to correctly calculate the deformation and internal force of pipeline is the key to pipeline safety evaluation. To this end, this study firstly used the Pasternak foundation beam model to simulate the interaction of pipeline and soil, and divided the pipeline into the void area (i.e., pipeline-soil detachment) and the coordination area (i.e., pipeline-soil is always deformed together) between pipeline and soil. The differential equation of pipeline deflection for the void area and the coordination area were established respectively, and the solutions of pipeline deflection, the internal force of pipeline and the width of pipeline-soil void area were presented. Subsequently, the accuracy of the proposed method was verified by comparing with the available model and field test data, and it is found that the calculation results are too conservative without considering the pipeline-soil voiding phenomenon. Finally, the detailed parametric analysis was conducted. The results show that the pipeline deflection decreases with the increase of the pipeline-tunnel spacing between pipeline and tunnel, the pipeline bending stiffness and the soil elastic modulus, but increases with the increase of the formation loss rate, and the width of pipeline-soil void area increases with the increase of the pipeline-tunnel spacing, the pipeline bending stiffness and the soil elastic modulus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call