Abstract

The aim of this study is performing free vibration analysis of segmented Timoshenko beams on two parameter elastic foundation by using the transfer matrix method (TMM). The Pasternak foundation model which has an incompressible shear layer of vertical elements attached to the Winkler springs was considered. The transfer matrix formulations which are based on closed-form solutions of equations of motion of Timoshenko beams on Pasternak foundation were obtained. The natural frequencies were calculated by equating the determinant of global transfer matrix of structure to zero after the reduction according to boundary conditions. The mode shapes were plotted by normalising the state vectors at the ends. Firstly, the natural frequencies that obtained by using the proposed approach were validated by data in literature for a simply supported beam where a very good agreement was observed. Then, three-segmented beam models having various boundary conditions namely simple-simple (S-S), simple-fixed (S-F), fixed-simple (F-S) and fixed-fixed (F-F) were considered for numerical analysis. For the segmented beam models, the natural frequencies that calculated by using the TMM were compared to the results of finite element method (FEM) from SAP2000 by ignoring effects of shear layer of elastic foundation. The effects of shear layer as well as stiffness of Winkler springs on the natural frequencies of the segmented beam model were revealed for S-S, S-F, F-S and F-F boundary conditions, respectively. The mode shapes of the segmented beam model were presented. The results show that TMM can be used as an effective tool for free vibration analysis of multi-segmented Timoshenko beams on Pasternak foundation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call