Abstract

Domination is the fastest-growing field within graph theory with a profound diversity and impact in real-world applications, such as the recent breakthrough approach that identifies optimized subsets of proteins enriched with cancer-related genes. Despite its conceptual simplicity, domination is a classical NP-complete decision problem which makes analytical solutions elusive and poses difficulties to design optimization algorithms for finding a dominating set of minimum cardinality in a large network. Here, we derive for the first time an approximate analytical solution for the density of the minimum dominating set (MDS) by using a combination of cavity method and ultra-discretization (UD) procedure. The derived equation allows us to compute the size of MDS by only using as an input the information of the degree distribution of a given network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.