Abstract

The time course of the current driving action potential generation at a neuron investigated experimentally is in general not measurable directly. In this paper an indirect method is introduced that allows estimation of this unknown current time course using only spike train data. Assuming the leaky integrator model as valid for the action potential encoding site of the investigated neuron, the unknown input current is obtained by determining (analytically) a current time course that upon injection into the leaky integrator model evokes action potential sequences identical to those observed experimentally. Applications of this current-reconstruction procedure to neuronal output data obtained from a leaky integrator model showed that the procedure allows a good estimation of the underlying input current even if the membrane time constant of the investigated neuron is not known exactly. Additionally, an application of current reconstruction to experimental data obtained from a cat muscle spindle primary afferent subject to repeated gamma-stimuli is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call