Abstract

This paper proposes the penetration displacement solutions of large-diameter open-ended steel pipe piles (LOSPs) with the diameter exceeding 2 m subjected to hammering load. The ultimate forcing equilibrium relationships between LOSP and soil are analyzed, and the calculated formula for self-sinking depth is derived. Next, a partial differential equation of pile hammering by single blow in soft soil is developed based on wave equation incorporating the kinematic method. A dynamic coefficient of frictional resistance (DCFR) is implemented in the process of derivation, and then the displacement Fourier analytical expression of LOSP under hammering load is presented. The parameters sensitivity of the analytical solution is investigated, and the displacement curve is compared with the numerical result. The new method presented in this paper could be used to assess the penetration development of driven piles under impact loading to predict the punching through or hammer refusal during penetration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.