Abstract
Analytical models for frequency response of multilayer graphene interconnects are obtained by a general multi-conductor analysis approach. The dependence of frequency response on the number of layers is studied for two types of contacts: top and side contacts. Although virtually all experiments on multi-layer graphene use top contacts that couple only to the top layer, the analytical models available consider side contacts that couple to all the layers. It is shown that for side contacts, the frequency response improves continuously with number of layers, unlike the top contacts, which show very little improvement beyond a few layers. The delay and energy-delay-product obtained from the frequency response are minimized at some optimal number of layers, which is dependent on the interconnect length.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have