Abstract

In this work an analytical model has been developed in order to predict the residual velocity of a cylindrical steel projectile, after impacting into a woven carbon/epoxy thin laminate. The model is based in an energy balance, in which the kinetic projectile energy is absorbed by the laminate through three different mechanisms: linear momentum transfer, fiber failure and laminate crushing. This last mechanism needs the quantification of the through-thickness compressive strength, which has been evaluated by means of quasi-static punch tests. Finally, high velocity impact tests have been accomplished in a wide range of velocities, to validate the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call