Abstract

The emergence of new composite materials in the building industry allows textile reinforced concrete (TRC) to be used in many industrial applications such as structural strengthening and new lightweight structures. One of the most promising applications of TRC is as a potential alternative to steel reinforced concrete and fiber reinforced polymer (FRP) used in the skins of foamed sandwich panels. This study proposes an analytical method of designing TRC sandwich panels. Additionally, the method allows the load bearing capacity of TRC sandwich panels under bending solicitation to be calculated. The proposed model can promote TRC applications in the engineering and building industry. The proposed model considers the nonlinear behavior of TRC using the ACK approach for evaluating the axial and bending stiffness of TRC in the multicracking and textile transmission phases. Furthermore, the foam shear strains and foam hardening during bending solicitations are considered. The analytical approach was validated based on experimental data, and the validation process implemented was used to investigate the evolution of local strains in TRC skins to ensure the robustness of the developed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.