Abstract

Deep geothermal energy can be used as space heating as an important sustainable, clean and efficient method through deep borehole heat exchanger (DBHE). However, the heat transfer of DBHE is much more complex than conventional shallow borehole and there is no available analytical modeling tool. This study fully considered the complex geological conditions of seepage, stratification, and geothermal gradient in the modeling. A S3-FLS with full name of “stratified-seepage-segmented finite line source method” is proposed and then verified through multi-facets comparison with numerical models and real project data. In addition, the unsteady heat transfer of water flow inside coaxial tube is established and incorporated with the S3-FLS model. The new model is featured as high computational speed, robustness, and flexibility. Those features are supported by the model analysis in this study, via investigating the impact of borehole segmentation, comparison between unsteady and steady water heat transfer and impact of complex geological conditions on system simulation. In addition, it is shown that the model can be easily used for dynamic heat extraction and recovery analysis, as well as DBHE array analysis, through some initial illustrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.