Abstract

The new trend towards minimally invasive millimeter-sized and free-floating distributed implants promises to enable emerging applications, such as chronic neural recording with minimal damage to the surrounding tissue. However, wireless power transmission (WPT) to these medical devices is quite challenging. The magnetic field produced by external transmitter (Tx) coils at the position of small implants can be considered homogeneous to separate the optimization of Tx and receiver (Rx) coils for efficient WPT. This paper focuses on the optimization of the solenoid-type Rx coils, which are suitable for this application. We have developed an analytical model of solenoid coils that includes the impact of tissue and coating around the coils, verified through simulations and measurements. Using the proposed model, under a given size restriction and a specific load, we find the optimal operating frequency and coil geometry to maximize a figure of merit (FoM) for the Rx that includes the loaded quality factor and its internal efficiency as well as a factor related to the coupling coefficient. For a millimeter-sized coil, the optimal operating frequency for the Rx and the number of turns are found to be 500 MHz and six, respectively, if the coil is closely wound using AWG36 copper wires. If the pitch is also optimized, then 700 MHz and four turns provide the best FoM for the solenoid Rx.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.