Abstract

Laser powder bed fusion (LPBF) is widely used in metal additive manufacturing to create geometrically complex parts, where heat transfer and its affected temperature distribution significantly influence the parts’ materials’ microstructure and the resulting materials’ properties. Among all the microstructure representations, crystallographic orientations play a paramount role in determining the mechanical properties of materials. This paper first developed a physics-based analytical model to predict the 3D temperature distribution in PBF considering heat transfer boundary conditions; heat input using point-moving heat source solutions; and heat loss due to heat conduction, convection, and radiation. The superposition principle obtained temperature distributions based on linear heat sources and linear heat loss solutions. Then, the temperature distribution was used to analytically obtain the texture grown on a substrate with random grain orientations considering columnar-to-equiaxed transition (CET). Thus, the link between process parameters and texture was established through CET models and physical rules. Ti-6Al-4V was selected to demonstrate the capability of the analytical model in a single-phase situation. By applying advanced thermal models, the accuracy of the texture prediction was evaluated based on a comparison of experimental data from the literature and past analytical model results. Hence, this work not only provides a method of the fast analytical simulation of texture prediction in the single-phase mode for metallic materials but also paves the road for subsequent studies on microstructure-affected or texture-affected materials’ properties for both academic research and industrial applications. The prediction of single-phase material texture has never been achieved before, and the scalability has been expanded.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call