Abstract

Selective laser melting (SLM) is a powder bed based additive manufacturing (AM) process to manufacture metallic parts. SLM is the complex thermal-physical-chemical process of the interaction between a laser source and metallic powders. The SLM printing method has been applied widely for fabricating the metallic parts. However, the high temperature in heating and fast cooling during SLM process result in the large residual stress which affects to the quality of the SLM printed parts such as distortion and cracks. This research proposes to develop a system for predicting the quality of the part from the manufacturing planning to remove the failures before carrying out the real printing process. For developing such system, a model for predicting the temperature distribution should be generated. From this model, an interrelationship between process parameters and temperature distribution should be derived out. Based on that, the deformation can be predicted by calculating residual stress along with the result of temperature distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call