Abstract

This research presents the development of a one-dimensional analytical model to investigate the impact of pressure variations in the primary loop on natural circulation (NC). The model takes into account a sinusoidal input heat distribution and derives equations for the parameters of NC. The model covers a broad spectrum of NC patterns, spanning from fully single-phase to fully two-phase flow. The research demonstrates a smooth and continuous transition between various kinds of NC. Moreover, the research demonstrates that NC is capable of efficiently dissipating the decay heat generated inside the core of a pressurized water reactor, encompassing a range from 100% to 60% of the total inventory present within the primary loop. The findings of this study are compared to prior research outcomes and demonstrate a reasonable level of consistency. Additionally, comparisons are made with uniform input power distribution to demonstrate that there are no significant differences in the NC parameters when using sinusoidal heat input.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.